Spike protein VP4 assembly with maturing rotavirus requires a postendoplasmic reticulum event in polarized caco-2 cells.

نویسندگان

  • Olivier Delmas
  • Anne-Marie Durand-Schneider
  • Jean Cohen
  • Odile Colard
  • Germain Trugnan
چکیده

Rotavirus assembly is a multistep process that requires the successive association of four major structural proteins in three concentric layers. It has been assumed until now that VP4, the most external viral protein that forms the spikes of mature virions, associates with double-layer particles within the endoplasmic reticulum (ER) in conjunction with VP7 and with the help of a nonstructural protein, NSP4. VP7 and NSP4 are two glycosylated proteins. However, we recently described a strong association of VP4 with raft-type membrane microdomains, a result that makes the ER a highly questionable site for the final assembly of rotavirus, since rafts are thought to be absent from this compartment. In this study, we used tunicamycin (TM), a drug known to block the first step of protein N glycosylation, as a tool to dissect rotavirus assembly. We show that, as expected, TM blocks viral protein glycosylation and also decreases virus infectivity. In the meantime, viral particles were blocked as enveloped particles in the ER. Interestingly, TM does not prevent the targeting of VP4 to the cell surface nor its association with raft membranes, whereas the infectivity associated with the raft fractions strongly decreased. VP4 does not colocalize with the ER marker protein disulfide-isomerase even when viral particles were blocked by TM in this compartment. These results strongly support a primary role for raft membranes in rotavirus final assembly and the fact that VP4 assembly with the rest of the particle is an extrareticular event.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Heterogeneity of Raft-type membrane microdomains associated with VP4, the rotavirus spike protein, in Caco-2 and MA 104 cells.

Previous studies have shown that rotavirus virions, a major cause of infantile diarrhea, assemble within small intestinal enterocytes and are released at the apical pole without significant cell lysis. In contrast, for the poorly differentiated kidney epithelial MA 104 cells, which have been used extensively to study rotavirus assembly, it has been shown that rotavirus is released by cell lysis...

متن کامل

Cloning and Expression of Simian Rotavirus Spike Protein (VP4) in Insect Cells by Baculovirus Expression System

Background: VP4 protein is as spikes on rotavirus outer capsid shell which is responsible for virus attachment to the host. VP4 induces production of neutralizing antibodies which could be used for serotyping of different isolates. Methods: Simian rotavirus SA11 gene 4 cDNA was cloned into a cloning plasmid pDONRTM by recombination reaction using clonase II enzyme mix. The resulting clone was c...

متن کامل

A role for actin in the polarized release of rotavirus 5

Rotaviruses are characterized by a polarized release from the apical side of infected enterocytes and the rotavirus VP4 spike protein specifically binds to the actin network at the apical pole of differentiated enterocytic cells. To determine the functional consequences of this VP4-actin interaction, fluorescence recovery after photobleaching experiments were carried out to measure the diffusio...

متن کامل

Rafts promote assembly and atypical targeting of a nonenveloped virus, rotavirus, in Caco-2 cells.

Rotavirus follows an atypical pathway to the apical membrane of intestinal cells that bypasses the Golgi. The involvement of rafts in this process was explored here. VP4 is the most peripheral protein of the triple-layered structure of this nonenveloped virus. High proportions of VP4 associated with rafts within the cell as early as 3 h postinfection. In the meantime a significant part of VP4 w...

متن کامل

Dissecting rotavirus particle-raft interaction with small interfering RNAs: insights into rotavirus transit through the secretory pathway.

Studies of rotavirus morphogenesis, transport, and release have shown that although these viruses are released from the apical surface of polarized intestinal cells before cellular lysis, they do not follow the classic exocytic pathway. Furthermore, increasing evidence suggests that lipid rafts actively participate in the exit of rotavirus from the infected cell. In this study, we silenced the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of virology

دوره 78 20  شماره 

صفحات  -

تاریخ انتشار 2004